

14 February 2024

MULTIPLE LARGE LITHIUM SOIL ANOMALIES DELINEATED AT MT ALEXANDER

HIGHLIGHTS

- Multiple new, large-scale lithium soil anomalies identified the largest with a strike of more than 2.7km in the recently completed soil sampling programme at Mt Alexander
- Lithium values have corresponding anomalous values of caesium (Cs) and tantalum (Ta) key pathfinder elements for potential lithium mineralisation
- One of the new soil anomalies measuring 1.7km x 1.3km is along strike from the Manta Prospect, where drilling by St George intersected a 121m thick fractionated pegmatite¹
- Another high-priority soil anomaly is located along the contact of the Copperfield Granite with the Mt Alexander greenstone belt – a favourable geological setting for potential lithium mineralisation and a direct analogue to the major lithium discovery by Delta Lithium (ASX: DLI) at its nearby Mt Ida Project (14.6Mt @ 1.2% Li₂O)² which is located less than 300m from the contact with the Copperfield Granite
- Drilling at the new soil anomaly targets where no previous drilling has occurred is scheduled for March 2024
- ERM (formerly known as CSA Global), a prominent mining consultancy firm with industry leading credentials in lithium exploration, has been engaged by St George to assist in lithium targeting at Mt Alexander
- Site visit by ERM and St George is underway this week with the aim of producing additional high-priority targets for drilling next month

St George Mining Limited (ASX: **SGQ**) ("**St George**" or "**the Company**") is pleased to announce promising soil sampling results at its flagship Mt Alexander Project in Western Australia.

John Prineas, St George Mining's Executive Chairman said:

"We are very pleased with the results of the latest soils programme, which delineated not just one but a series of strong kilometre-long lithium soil anomalies in areas not yet drill tested for lithium.

"The consistency and cohesiveness of the lithium values within these large-scale anomalies is impressive. The coincident pathfinder elements like tantalum and caesium as well as the extensive pegmatite outcrop make these areas compelling drill targets.

"Drilling approvals are in place and we look forward to testing these promising targets very soon.

"The lithium exploration programme at Mt Alexander is part of St George's disciplined and wellfunded approach to advancing our portfolio of high-quality projects through the commodity cycle and positioning our assets for the resurgence in battery metals market conditions."

² See Delta Lithium's ASX Release dated 3 October 2023 "Mt Ida Lithium Mineral Resource Estimate Update"

ST GEORGE MINING LIMITED ACN 139 308 973 Suite 2, Level 2, 28 Ord Street West Perth WA 6005 | PO Box 100 West Perth WA 6872 www.stgeorgemining.com.au | Phone +61 8 6118 2118

¹ See St George's ASX Release dated 29 March 2023 *"121 Metre Pegmatite Intersection at Mt Alexander"* and ASX Release dated 5 July 2023 *"Lithium Results at Mt Alexander"*

SUCCESSFUL SOILS PROGRAMME

In Q4 2023, St George completed a geochemical soil survey over two broad areas at Mt Alexander; see Figure 1. These included zones within tenements E29/638, E29/1143, E29/962 and P29/2680.

The soil survey followed on from drilling in late 2022 and early 2023 at the Jailbreak Prospect – within E29/638 and E29/962 – that confirmed the presence of lithium mineralised pegmatites at or near surface and up to depths of 300m below surface. High grades – up to 1.8% Li₂O – were returned in the drill results, highlighting the potential of the pegmatite system.³

The soil survey also included areas on E29/1143 and P29/2680, tenements acquired by St George in late 2022. St George believes this soil sampling is the first ever systematic exploration for lithium at these tenements.

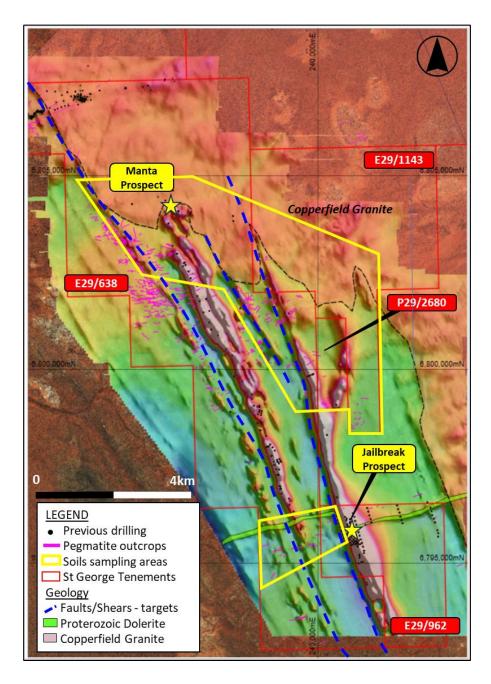


Figure 1 – Mt Alexander Project map showing soil survey areas and the interpreted contact between the greenstone sequence and the Copperfield Granite overlying TMI magnetics imagery.

The survey area in the south represents a 4km-long zone along strike from where drilling by St George has already intersected multiple lithiumbearing pegmatites at Jailbreak.

The larger survey area in the north covers more than 10km of the contact between the Copperfield Granite and the Mt Alexander ultramafic sequences, including a large zone around the Manta Prospect where a 121m thick pegmatite was intersected in drilling by St George.

³ See St George's ASX Release dated 29 May 2023 "Mt Alexander Exploration Update"

The soils programme:

The survey was completed on a minimum spacing of 200m x 100m, with a total of 1,421 soil samples collected.

Samples were assayed at LabWest using the Ultrafine technique. Analysis used the $<2\mu$ m Ultrafine+ method for 53 elements including lithium and pathfinder elements such as caesium, tantalum, rubidium, niobium and tin.

Figure 2 shows the soil anomalies delineated from the sampling results. The soil anomalies represent areas with >100ppm Li_2O – considered highly anomalous using the soil sampling technique. The numbers attributed to each anomaly in Figure 2 correspond to the numbers in the summary below.

Figure 2 – map of Mt Alexander (overlying magnetic data) showing lithium in soil anomalies.

The new soil anomalies:

The high-priority soil anomalies are:

- Jailbreak West this anomalous zone is in the southern soil survey area, to the west of the lithium mineralised pegmatites at the Jailbreak Prospect. The zone incorporates multiple parallel lithium soil anomalies measuring in total 2.7 km x 2.3 km. The ENE-WSW trending anomalous zones are coincident with E-W oriented Proterozoic dykes, the same geological setting known to host high-grade lithium mineralisation at Jailbreak.
- 2. **Mt Alexander East** this area is within E29/1193, located on the eastern margin of the Mt Alexander project tenure. The soil anomaly here measures 900m x 600m and is coincident with several fractionated pegmatite outcrops. This area presents as a high order drill target.
- 3. **Manta East** a large anomalous zone measuring 1.7 km x 1.4 km directly east of the Manta Prospect. This area is hosted along a large-scale fault transecting the contact of the Copperfield Granite and the Mt Alexander greenstone sequences. The Mt Ida Deposit of Delta Lithium is hosted 300m from the contact of the Mt Ida greenstones with the Copperfield Granite, providing added encouragement for the potential at Manta East.
- 4. **Manta** a series of soil anomalies was defined along a 4km east-west oriented zone at the Manta Prospect. The anomalies are coincident with the Mt Alexander greenstone sequences, representing a favourable location for potential extensions of the 121m thick pegmatite intersected in MAD213 at Manta.

Significantly, all lithium soil anomalies have an association with elevated values for lithium pathfinder elements – particularly tantalum and caesium. This further supports the presence of a LCT (lithium-caesium-tantalum) pegmatite field that is prospective for lithium mineralisation.

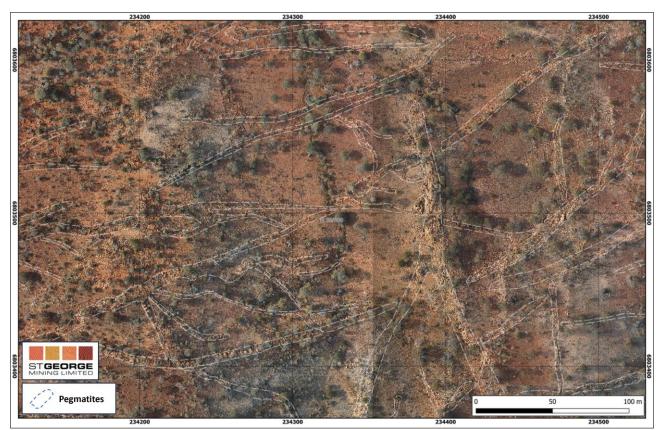
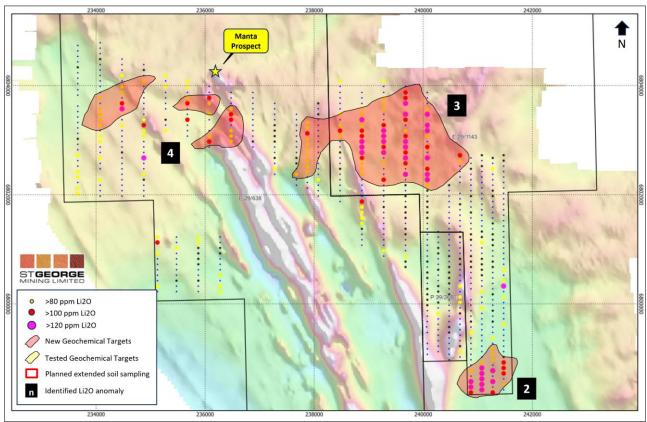



Figure 3 – drone imagery showing an example of pegmatite outcrop at Target 4.

Figure 4 – soil anomalies in the northern survey area.

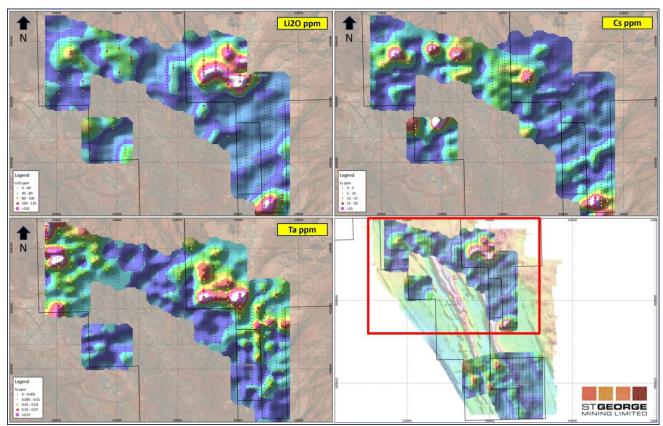


Figure 5 – plots showing the strong coincidence of the lithium, caesium and tantalum soil geochemistry in the northern survey area.

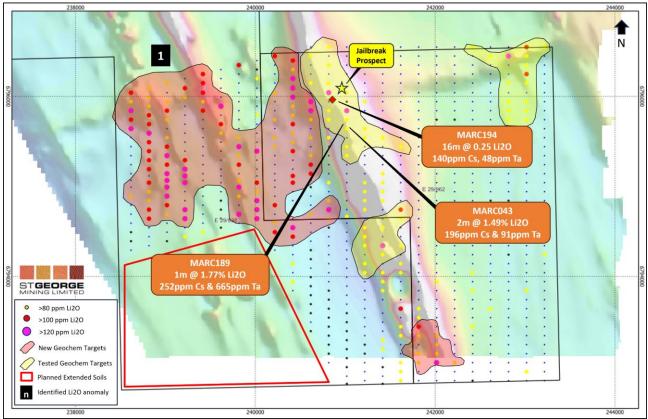


Figure 6 – soil anomalies in the Jailbreak West survey area.

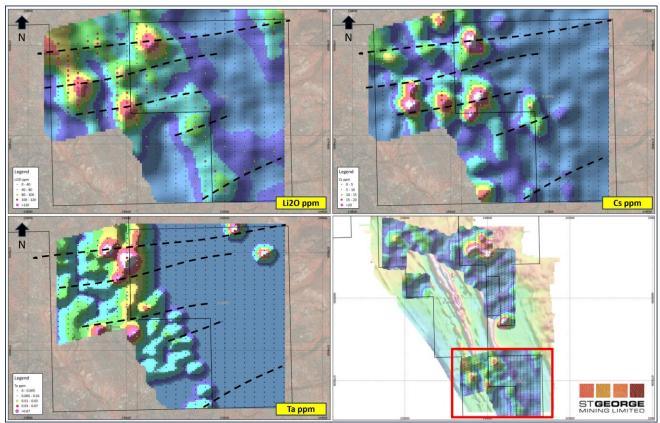


Figure 7 – plots showing the strong coincidence of the lithium, caesium and tantalum geochemistry in the Jailbreak west survey area.

Another significant outcome from the recent soil survey is the relative strength of the latest soil anomalies when compared to those of over known mineralised pegmatites at Jailbreak. The new targets show much higher LCT anomalism – see Figures 4 and 6.

The results of the latest soil survey are highly encouraging and emphasise the significant lithium prospectivity on the Mt Alexander landholding. With only a fraction of the large project tenure tested by drilling to date, the new soil anomalies represent compelling targets for potential new discoveries.

Extensions and in-filling to the current soil surveys are already planned to further delineate and add to the company's current lithium target inventory.

NOTE:

Visual observations of pegmatites are based on geological logging and visual interpretations and should not be considered a substitute for laboratory analysis which is required to determine the concentration of any elements that may be indicative of possible mineralisation associated with pegmatites that are mapped, sampled from rock chips or intersected by drilling.

ERM LITHIUM REVIEW

St George has engaged external consulting firm ERM (formerly CSA Global) to advise on lithium prospectivity and targeting at the Mt Alexander Project.

ERM have been involved in many lithium projects in Western Australia and are widely recognised for industry leading expertise in hard-rock lithium mineralisation.

Representatives of ERM are currently at Mt Alexander completing a field review in conjunction with the technical team from St George. This review will culminate in recommendations by ERM for lithium targeting at Mt Alexander.

We will aim to incorporate these recommendations into the drill programme scheduled to start at Mt Alexander in March 2024.

More than 500 pegmatite outcrops have been mapped to date at Mt Alexander – including pegmatite swarms within the area of the new soil anomalies – underscoring the strong exploration potential.

About the Mt Alexander Project:

The Mt Alexander Project is located 120km south-west of the Agnew-Wiluna Belt, in a region which hosts numerous world-class lithium, nickel and gold deposits. The Project comprises eight tenements – seven granted exploration licences, E29/638, E29/548, E29/962, E29/954, E29/972, E29/1041 and E29/1143 and one Prospecting Licence P29/2680 – which are a contiguous package. An additional exploration licence – E29/1093 – is located to the southeast of the core tenement package.

The Cathedrals, Stricklands, Investigators and Radar nickel-copper-cobalt-PGE discoveries are located on E29/638, which is held in joint venture by St George (75%) and IGO Limited (25%). St George is the Manager of the Project, with IGO retaining a 25% non-contributing interest (in E29/638 only) until there is a decision to mine.

Table 1: List of soil samples assays > 100ppm Li₂O pertaining to this report. Coordinates are in GDA94 MGA Zone 51.

SampleID	Easting	Northing	Li₂O_ppm	Cs_ppm	Ta_pppm	Sn_pppm	Rb_pppm
MAS02866	243014	6796545	108.5	5.61	0.005	41.0	66.6
MAS02869	243014	6796245	108.5	6.97	0.005	32.0	75.9
MAS02906	242814	6796445	122.1	8.33	0.005	28.0	74.6
MAS03096	242014	6793045	135.6	9.18	0.005	-	68.1
MAS03131	241814	6793445	108.5	8.50	0.005	-	70.7
MAS03156	241614	6794745	108.5	30.43	0.005	-	93.9
MAS03167	241614	6793645	108.5	5.27	0.005	-	66.6
MAS03195	241414	6794345	149.2	16.83	0.005	-	70.8
MAS03234	241014	6795845	122.1	10.20	0.005	-	67.2
MAS03251	240814	6796045	122.1	6.80	0.005	-	60.6
MAS03264	240814	6794745	122.1	24.99	0.005	-	139.0
MAS03272	240614	6795945	176.3	25.33	0.005	6.0	182.0
MAS03273	240614	6795845	203.5	33.66	0.005	7.0	111.0
MAS03280	240614	6795245	108.5	9.86	0.005	-	59.0
MAS03281	240614	6795145	108.5	13.43	0.005	-	89.5
MAS03409	240214	6796445	109.8	9.40	0.900	-	98.9
MAS03426	240214	6794795	105.5	5.90	0.600	-	162.7
MAS03429	240214	6794495	107.7	3.20	0.700	-	44.0
MAS03457	240014	6795395	219.6	2.90	0.900	-	31.4
MAS03461	240014	6795045	118.4	3.80	0.700	-	67.5
MAS03463	240014	6794845	172.2	12.10	1.000	-	83.5
MAS03464	240014	6794745	167.9	10.00	0.800	-	59.9
MAS03464	240014	6794745	163.6	10.10	0.900	-	63.1
MAS03465	240014	6794645	217.5	11.50	0.800	-	81.8
MAS03484	239814	6796345	101.2	16.50	0.900	-	96.1
MAS03493	239814	6795445	150.7	5.60	2.200	-	70.5
MAS03315	240070	6802280	140.8	5.81	0.090	4.4	156.0
MAS03316	240070	6802380	152.2	5.82	0.110	5.2	165.0
MAS03317	240070	6802480	100.5	3.72	0.040	4.1	110.0
MAS03415A	240870	6798380	111.5	4.38	0.010	2.4	68.7
MAS03416A	240870	6798480	146.4	8.85	0.010	2.6	103.0
MAS03417A	240870	6798580	167.9	16.10	-	2.6	239.0
MAS03453A	241070	6798430	133.9	8.94	0.010	3.1	120.0
MAS03454A	241070	6798530	155.0	17.60	0.010	2.5	162.0
MAS03455A	241070	6798630	320.8	25.70	0.010	3.4	282.0
MAS03456A	241070	6798730	219.6	23.50	0.010	2.4	342.0
MAS03457A	241070	6798830	160.6	16.20	0.010	2.8	189.0
MAS03491A	241270	6798380	114.5	14.70	0.010	3.1	182.0
MAS03493A	241270	6798580	128.3	13.70	0.010	2.6	115.0
MAS03495	241270	6798780	122.3	13.10	0.010	2.2	170.0
MAS03532	241470	6798730	102.1	12.40	0.010	2.3	160.0

SampleID	Easting	Northing	Li ₂ O_ppm	Cs_ppm	Ta_pppm	Sn_pppm	Rb_pppm
MAS03533	241470	6798830	110.4	8.69	0.010	2.2	108.0
MAS03534	241470	6798930	104.9	10.20	0.010	2.0	107.0
MAS03548	241470	6800330	120.6	5.97	0.020	3.2	91.5
MAS03600	238470	6803180	110.0	6.30	0.010	3.2	116.0
MAS03631	238870	6801880	101.6	6.11	0.010	2.5	78.2
MAS03639	238870	6802680	102.1	14.60	0.010	2.9	155.0
MAS03640	238870	6802780	264.8	13.40	0.020	4.9	177.0
MAS03641	238870	6802880	170.7	14.20	0.020	4.5	228.0
MAS03642	238870	6802980	136.5	11.80	0.030	4.1	243.0
MAS03643	238870	6803080	112.8	6.92	0.040	3.5	102.0
MAS03644	238870	6803180	114.8	6.57	0.030	3.0	122.0
MAS03646	238870	6803380	125.7	6.50	0.030	4.1	169.0
MAS03689	239270	6802280	118.6	7.12	0.040	4.4	147.0
MAS03694	239270	6802780	121.2	5.97	0.030	4.0	219.0
MAS03695	239270	6802880	105.5	5.31	0.020	3.7	116.0
MAS03696	239270	6802980	151.4	5.06	0.020	3.6	139.0
MAS03697	239270	6803080	149.2	6.49	0.020	4.4	153.0
MAS03698	239270	6803180	204.8	6.52	0.020	5.0	191.0
MAS03738	239670	6802380	128.5	6.49	0.060	6.0	188.0
MAS03740	239670	6802580	116.5	4.90	0.020	3.5	137.0
MAS03741	239670	6802680	132.2	5.29	0.030	4.3	168.0
MAS03777	236470	6803380	102.3	12.50	0.010	2.1	110.0
MAS03778	236470	6803480	109.2	19.20	-	1.9	142.0
MAS03873	237870	6803130	110.2	9.33	0.010	3.2	98.3
MAS03912	234470	6803580	173.1	23.10	0.020	2.9	346.0
MAS03913	234470	6803680	100.5	8.21	0.010	2.5	127.0
MAS03980	235670	6803380	111.5	12.00	0.020	3.0	133.0
MAS03983	235670	6803680	115.2	16.80	0.010	2.5	180.0
MAS04001	236070	6802980	106.8	7.33	0.010	2.2	54.8
MAS04009	236070	6803780	107.7	7.02	0.010	2.5	107.0
MAS04117	240414	6796395	103.6	6.24	0.010	3.3	77.4
MAS04119	240414	6796195	139.1	13.80	-	3.1	111.0
MAS04120	240414	6796095	301.4	30.60	0.010	4.2	243.0
MAS04121	240414	6795995	143.2	24.40	0.010	2.8	174.0
MAS04124	240414	6795695	101.4	5.48	0.010	2.0	55.0
MAS04127	240414	6795395	103.8	4.70	0.010	2.0	48.9
MAS04130	240414	6795120	110.9	10.30	0.010	1.7	52.3
MAS04131	240414	6795045	110.7	5.89	-	2.3	62.0
MAS04136	240414	6794545	122.9	39.00	-	3.5	199.0
MAS04137	240414	6794445	116.5	8.16	-	2.6	73.5
MAS04144	239814	6795245	117.3	7.96	-	2.0	61.1
MAS04147	239814	6794995	136.1	17.40	0.010	3.4	103.0
MAS04150	239814	6794695	130.5	13.60	0.010	2.3	81.0

SampleID	Easting	Northing	Li ₂ O_ppm	Cs_ppm	Ta_pppm	Sn_pppm	Rb_pppm
MAS04152	239614	6795895	168.1	16.30	0.010	2.5	90.9
MAS04154	239614	6795695	106.4	9.39	0.010	3.2	92.6
MAS04167	239414	6796245	104.2	9.85	0.010	4.0	90.9
MAS04168	239414	6796145	119.7	8.18	0.010	4.6	59.7
MAS04169	239414	6796045	109.2	7.21	0.010	11.7	85.6
MAS04171	239414	6795845	111.3	11.50	0.010	4.2	86.4
MAS04187	239214	6796095	109.2	4.98	0.010	3.3	60.8
MAS04195	239214	6795295	101.8	3.83	0.010	2.1	29.6
MAS04196	239214	6795195	148.8	5.10	-	1.5	42.2
MAS04197	239214	6795120	262.7	38.60	-	5.2	242.0
MAS04198	239214	6795045	160.6	11.20	-	4.7	59.7
MAS04201	239214	6794745	129.2	30.40	0.010	4.6	131.0
MAS04202	239214	6794645	134.3	18.10	-	3.8	83.8
MAS04208	239014	6795845	101.4	4.09	-	2.6	58.1
MAS04212	239014	6795445	100.8	2.65	-	2.1	41.8
MAS04213	239014	6795345	121.9	3.93	-	2.6	50.9
MAS04214	239014	6795245	104.2	10.40	-	3.6	96.0
MAS04215	239014	6795145	122.5	3.84	-	2.0	59.1
MAS04216	239014	6795070	120.8	2.18	-	1.8	28.2
MAS04217	239014	6794995	151.4	8.79	0.010	2.2	73.6
MAS04218	239014	6794895	138.0	8.61	0.010	2.6	54.1
MAS04219	239014	6794795	108.3	14.00	0.010	3.0	87.0
MAS04227	238814	6795795	115.0	8.69	0.010	1.6	88.1
MAS04228	238814	6795695	108.1	12.90	0.010	1.7	111.0
MAS04229	238814	6795595	139.1	8.82	-	2.4	105.0
MAS04230	238814	6795495	104.0	6.34	0.010	2.3	58.7
MAS04231	238814	6795395	105.1	7.55	0.010	2.8	90.3
MAS04232	238814	6795295	118.0	5.60	0.010	3.3	64.2
MAS04233	238814	6795195	117.8	5.70	0.010	3.3	70.0
MAS04235	238814	6795045	108.5	4.03	0.010	2.1	64.9
MAS04238	238814	6794745	104.6	1.93	0.010	1.9	16.4
MAS04239	238814	6794645	100.8	3.79	0.010	2.6	31.4
MAS04243	238614	6796045	116.9	7.47	0.010	2.2	81.7
MAS04245	238614	6795845	148.3	10.70	0.010	3.6	130.0
MAS04246	238614	6795745	105.9	3.48	0.010	2.5	30.7
MAS04247	238614	6795645	135.2	13.20	0.010	6.4	70.7
MAS04278	239270	6803280	118.8	5.10	0.010	2.8	92.2
MAS04299	239670	6802780	119.1	3.45	0.030	2.4	66.7
MAS04300	239670	6802880	178.7	5.58	0.040	3.9	140.0
MAS04301	239670	6802980	167.1	5.86	0.020	3.6	155.0
MAS04302	239670	6803080	112.8	4.63	0.020	3.5	106.0
MAS04305	239670	6803380	119.9	3.96	0.010	2.4	94.9
MAS04306	239670	6803480	155.2	4.60	0.010	3.3	117.0

SampleID	Easting	Northing	Li₂O_ppm	Cs_ppm	Ta_pppm	Sn_pppm	Rb_pppm
MAS04308	239670	6803680	184.9	5.08	0.010	4.4	125.0
MAS04309	239670	6803780	101.0	4.12	0.010	2.7	74.0
MAS04310	239670	6803880	116.3	5.92	0.010	3.7	130.0
MAS04326	240070	6802680	297.1	5.17	0.020	4.4	163.0
MAS04328	240070	6802880	106.1	4.91	0.010	3.1	180.0
MAS04331	240070	6803180	170.9	3.71	0.010	3.4	113.0
MAS04332	240070	6803280	140.8	4.13	0.010	3.4	99.9
MAS04334	240070	6803480	155.9	4.65	0.010	3.7	118.0
MAS04354	240670	6802730	100.1	4.93	0.010	2.7	121.0
MAS04420	234870	6803280	107.4	12.30	0.010	2.4	99.7
MAS04426	234870	6802680	133.9	2.39	0.010	1.9	38.2
MAS04435	235120	6801130	117.3	10.40	0.020	2.4	168.0

Authorised for release by the Board of St George Mining Limited.

For further information, please contact:	
John Prineas	Peter Klinger
Executive Chairman	Media and Investor Relations
St George Mining Limited	Cannings Purple
+61 411 421 253	+61 411 251 540
john.prineas@stgm.com.au	pklinger@canningspurple.com.au

Competent Person Statement:

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves for the Ajana Project is based on information compiled by Mr Dave Mahon, a Competent Person who is a Member of The Australasian Institute of Geoscientists. Mr Mahon is employed by St George Mining Limited to provide technical advice on mineral projects, and he holds performance rights issued by the Company.

Mr Mahon has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mahon consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements:

This announcement includes forward-looking statements that are only predictions and are subject to known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of St George, the directors and the Company's management. Such forward-looking statements are not guarantees of future performance.

Examples of forward-looking statements used in this announcement include use of the words 'may', 'could', 'believes', 'estimates', 'targets', 'expects', or 'intends' and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of announcement, are expected to take place.

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, St George does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by St George Mining Limited. The document contains background Information about St George Mining Limited current at the date of this announcement.

The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular persons.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the fullest extent of the law, St George Mining Limited, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinion, estimates, forecasts or other representations contained in this announcement. No responsibility for any errors or omissions from the announcement arising out of negligence or otherwise is accepted.

The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Soils: Each soil sample is taken from a manually excavated pit approximately 300mm deep (depending on the nature of the sampling medium). The loose material at the bottom of the pit is placed through a series of sieves, with the fine fraction of the 180micron sieve placed into pre-numbered paper geochemical sample envelope. The sample envelopes are then sent to a certified laboratory for assay.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Soils: Each sample is sourced from the loose material at the bottom of the sample pit which is considered to be representative of the profile being targeted.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg	Soils: A single sample are taken on a predetermined spacing and collected using uniquely numbered calico bags. Each sample collected for assay typically weighs 50g, and once dried, is prepared for the laboratory.
	'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other	Pulverisation further reduces the particle size with 90% of the material passing 75micron. The sample is then assayed using the peroxide fusion method.
	cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The Ultrafine method utilises the -2 micron clay fraction, all sample material above 2mm was screened off to ensure ample -2 micron material in the sample.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	The results reported do not include drilling results.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Not applicable as the results reported do not include drilling results.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Not applicable as the results reported do not include drilling results.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each sample is recorded for the lithology, type and nature of the soil. The surface topography and type is recorded at the sample location.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	Not applicable as the results reported do not include drilling results.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as the results reported do not include drilling results.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry when sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Soils samples: All samples were dry sieved and approximately 500 grams sampled in the field and bagged. No further subsampling is conducted. A 200g sample is considered appropriate for soil sampling; samples collected where more than adequate to generate an representative subsample aliquot
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	No QAQC are inserted within the submitted samples and are not deemed necessary for this stage of exploration. Internal laboratory QAQC measures are considered sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sample material is sourced from the bottom of the pits with efforts made to reduce the amount of surficial 'float' material entering the sample. Sieving of the sample helps to homogenise and reduce size fraction of the sample
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to screen for the geochemical signatures of base metal sulphide, gold and lithium pegmatite mineralisation and associated geology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Two separate labs were utilised during the soils campaign. 917 were sent to Labwest using the UFF soil samples was submitted to LabWest – Perth for analysis and sample preparation including separation and collection of <180µm fraction. Gold and multi- element analysis was done utilising LabWest's Ultrafine+ microwave digest with an ICPEOS/MS finish.
		504 were sent to SGS laboratories in Perth for analysis. The soil samples are analysed using an Peroxide Fusion Digest with either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass-Spectrometry (ICP-MS) finish.

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld XRF instrument (Olympus Innov-X Spectrum Analyser) is used to provide an initial assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (usually daily).
		The handheld XRF results are only used for preliminary assessment of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and staff Geologists.
	The use of twinned holes.	Not applicable as the results reported do not include drilling results.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a tablet or notepad and includes geological logging, sample data. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	Assay data was levelled using the median ratio levelling method to adjust assays across the two different assay analysis methods used for the entire programme. This involves using the medians across the two datasets and adjusting one to the other for the purpose of displaying the results graphically. This was completed for Lithium (x1.26), caesium (x1.7) and tantalum (x0.014).
		An oxide conversion rate 2.1527 was used to convert from Lithium (Li_ppm) to Lithium di-oxide (Li ₂ 0_ppm).
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 51.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS. A topographic surface has been created using this elevation data. The local elevation data is also captured with the handheld GPS when sampling.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The soil samples were taken at 100m intervals along the geochemical survey lines. Survey lines were 200m or 400m apart.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as the results reported do not include drilling results used for resource estimation.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The soil samples are taken at regular intervals, at a near perpendicular orientation to targeted geology (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to potential mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data. The soils programme has been reviewed by third parties and consultant geologists.

Section 2 Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant)

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Status	Type, name/reference number, location and ownership including agreements or material issues with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mt Alexander Project is comprised of eight granted Exploration Licences (E29/638, E29/548, E29/954, E29/962, E29/972, E29/1041, E29/1143 and P29/2680). Tenement E29/638 is held in Joint Venture between St George (75% interest) and Western Areas (25% interest). E29/638 and E29/548 are also subject to a royalty in favour of a third party that is outlined in the ASX Release dated 17 December 2015 (as regards E29/638) and the ASX release dated 18 September 2015 (as regards E29/548).
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No environmentally sensitive sites have been identified on the tenements. A registered Heritage site known as Willsmore 1 (DAA identification 3087) straddles tenements E29/548 and E29/638. All five tenements are in good standing with no known impediments.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Exploration on tenements E29/638 and E29/962 has been largely for komatiite-hosted nickel sulphides and pegmatite hosted lithium caesium, tantalum deposits in the Mt Alexander Greenstone Belt. Exploration in the northern section of E29/638 (Cathedrals Belt) and also limited exploration on E29/548 has been for intrusive Ni-Cu sulphides in granite terrane. No historic exploration has been identified on E29/954 or E29/972.
		Mafic-Ultramafic intrusion related high grade nickel-copper-PGE sulphides were discovered at the Mt Alexander Project in 2008. Drilling was completed to test co-incident electromagnetic (EM) and magnetic anomalies associated with nickel-PGE enriched gossans in the northern section of current tenement E29/638. The drilling identified high grade nickel-copper mineralisation in granite-hosted and East-West orientated ultramafic units and the discovery was named the Cathedrals Prospect.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation	The Mt Alexander Project is at the northern end of a western bifurcation of the Mt Ida Greenstones. The greenstones are bound to the west by the interpreted Ida Fault, a significant Craton-scale structure that marks the boundary between the Kalgoorlie Terrane (and Eastern Goldfields Superterrane) to the east and the Youanmi Terrane to the west. The Mt Alexander Project is prospective for further high-grade nickel-
		mineralisation (both komatiite and mafic-ultramafic intrusive hosted), lithium mineralisation and also precious metal mineralisation (i.e. orogenic gold) that is typified elsewhere in the Yilgarn Craton.
Drill hole information	A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar •Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • Dip and azimuth of the hole • Down hole length and interception depth • Hole length	Drill hole collar locations are shown in the maps and tables included in the body of the relevant ASX releases.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. For massive sulphide intersections, the nominal lower cut-off is 2% for either nickel or copper. For disseminated, blebby and matrix sulphide intersections the nominal lower cut-off for nickel is 0.3%.
	Where aggregated intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of exploration results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect.	Assay intersections are reported as down hole lengths. Drill holes are planned as perpendicular as possible to intersect the target EM plates and geological targets so downhole lengths are usually interpreted to be near true width.
iagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views.	A prospect location map, cross section and long section are shown in the body of relevant ASX Releases.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practical, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at <u>www.stgm.com.au</u> : The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material or meaningful data collected has been reported.
Further Work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large – scale step – out drilling).Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.